Menentukan Interval Fungsi Naik dan Fungsi Turun

Menentukan Interval Fungsi Naik dan Fungsi Turun. Selain dengan melihat secara visual pada grafik, interval naik atau turunnya suatu fungsi dapat

Perhatikan grafik fungsi berikut !

Grafik fungsi naik dan fungsi turun


Dari grafik diatas dapat dilihat bahwa fungsi f(x) naik pada interval \(\mathrm{x < a}\) atau \(\mathrm{x > b}\) dan turun pada interval \(\mathrm{a < x < b}\)

Selain dengan melihat secara visual pada grafik, interval naik atau turunnya suatu fungsi dapat ditentukan dari turunan pertama fungsi tersebut.
  1. Jika f '(x) > 0 untuk semua x yang berada pada interval I, maka f naik pada I.
  2. Jika f '(x) < 0 untuk semua x yang berada pada interval I, maka f turun pada I.

Contoh 1
Jika f(x) = x2 − 6x + 8, tentukan interval f(x) naik dan interval f(x) turun!

Jawab :
f '(x) = 2x − 6

f(x) naik ⇒ f '(x) > 0
⇔  2x − 6 > 0
⇔  2x > 6
⇔  x > 3

f(x) turun ⇒ f '(x) < 0
⇔  2x − 6 < 0
⇔  2x < 6
⇔  x < 3

Jadi f(x) naik pada interval x > 3 dan turun pada interval x < 3.


Contoh 2
Fungsi f(x) = 2x3 − 3x2 − 36x naik pada interval ...

Pembahasan :
f '(x) = 6x2 − 6x − 36

f(x) naik  ⇒ f '(x) > 0
⇔  6x2 − 6x − 36 > 0

Pembuat nol :
6x2 − 6x − 36 = 0
x2 − x − 6 = 0
(x + 2)(x − 3) = 0
x = −2  atau x = 3


Jadi f(x) naik pada interval x < −2 atau x > 3


Contoh 3
Fungsi f(x) = x4 − 8x3 + 16x2 + 1 turun pada interval ...

Pembahasan :
f '(x) = 4x3 − 24x2 + 32x

f(x) turun  ⇒ f '(x) < 0
⇔  4x3 − 24x2 + 32x < 0

Pembuat nol :
⇔  x3 − 6x2 + 8x = 0
⇔  x (x2 − 6x + 8) = 0
⇔  x (x − 2)(x − 4) = 0
⇔  x = 0 atau x = 2 atau x =4

Jadi f(x) turun pada interval \(\mathrm{x<0}\) atau \(\mathrm{2<x<4}\)